Stress Analysis of Skew Nanocomposite Plates Based on 3D Elasticity Theory Using Differential Quadrature Method
نویسندگان
چکیده مقاله:
In this paper, a three dimensional analysis of arbitrary straight-sided quadrilateral nanocomposite plates are investigated. The governing equations are based on three-dimensional elasticity theory which can be used for both thin and thick nanocomposite plates. Although the equations can support all the arbitrary straight-sided quadrilateral plates but as a special case, the numerical results for skew nanocomposite plates are investigated. The differential quadrature method (DQM) is used to solve these equations. In order to show the accuracy of present work, our results are compared with other numerical solution for skew plates. From the knowledge of author, it is the first time that the stress analysis of arbitrary straight-sided quadrilateral nanocomposite plates is investigated. It is shown that increasing the skew angle and thickness of nanocomposite skew plate will decrease the vertical displacements. It is also noted that the thermal effects are also added in the governing equations.
منابع مشابه
Bending analysis of composite sandwich plates using generalized differential quadrature method based on FSDT
Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...
متن کاملElastic/plastic Buckling Analysis of Skew Thin Plates based on Incremental and Deformation Theories of Plasticity using Generalized Differential Quadrature Method
Abstract In this study, generalized differential quadrature analysis of elastic/plastic buckling of skew thin plates is presented. The governing equations are derived for the first time based on the incremental and deformation theories of plasticity and classical plate theory (CPT). The elastic/plastic behavior of plates is described by the Ramberg-Osgood model. The ranges of plate geometries...
متن کاملVibration Analysis of Thick Functionally Graded Beam under Axial Load Based on Two-Dimensional Elasticity Theory and Generalized Differential Quadrature
In this paper, vibration analysis of thick functionally graded beam with simply supported boundary condition under constant axial load is studied. The beam has a uniform cross-sectional area and the mechanical properties of the fungtionally graded beam are assumed to be vary through the thickness of the beam. Fundamental relations, the equilibrium and stability equations based on the displaceme...
متن کاملFree vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method
In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...
متن کاملbuckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
In the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 2
صفحات 158- 172
تاریخ انتشار 2014-06-30
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023